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Resumen

En este artículo, discutimos varios aspectos de la tran-
sición de fase cuántica, con especial énfasis en la tran-
sición metal-aislante. Comenzamos con una revisión 
de trabajos claves experimentales y teóricos realizado 
por científicos que hicieron contribuciones histórica-
mente importantes al campo. Posteriormente discuti-
mos cómo la adición de dopaje a un sistema reduce la 
temperatura crítica de la transición de fase. Aunque 
muchos aspectos de la transición de fase cuántica si-
guen siendo un problema abierto, se han hecho pro-
gresos considerables para revelar la física subyacente, 
tanto teórica como experimentalmente.       

Palabras clave: Transición de fase cuántica; transición 
metal aislante; DMFT; StatDMFT; localización de An-
derson.

Abstract

In this article, we discuss several aspects of the quantum 
phase transition, with special emphasis on the metal-
insulator transition. We start with a review of key ex-
perimental and theoretical works and then discuss how 
doping a system reduces the critical temperature of the 
overall phase transition. Although many aspects of the 
quantum phase transition still remain an open problem, 
considerable progress has been made in revealing the 
underlying physics, both theoretically and experimenta-
lly.

Keywords: quantum phase transition; metal insulator 
transition; DMFT; StatDMFT; Anderson localization.
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Introduction and discussion

The flow of electrons in a metal was first suc-
cessfully described in a model by Paul Drude in 
1900 [1]. This semi-classical theory assumes that 
electrons move freely through crystal without 
feeling the effects of other electrons, but can 
be scattered by crystalline ions, where the ave-
rage time interval between scattering events is 
known as the relaxation time. This simple model 
enables description of a constant current due to 
an applied electric field [1]. The Drude theory was 
modified by Arnold Sommerfeld in 1927. His free 
electron model includes quantum effects, such as 
the Fermi-Dirac distribution and Pauli exclusion 
principle. The theoretical basis for understanding 
why this model describes the behavior of various 
materials was established by Lev Landau with his 
Fermi liquid theory [2]. This theory maps elemen-
tary excitations of interacting electronic systems 
onto excitations of non-interacting systems, des-
cribing weak residual interactions with a small set 
of phenomenological parameters. The primary 
result of Fermi liquid theory is that low energy ex-
citations, known as quasiparticles, behave almost 
like non-interacting electrons. The relaxation time 
of a quasiparticle state diverges as its energy ap-
proaches the Fermi energy, E�, and as T → 0. 

In highly correlated electronic systems, the effects 
of interactions between electrons cannot be ne-
glected. Such effects lead to interesting pheno-
mena, including the metal-insulator phase transi-
tion, which have attracted considerable attention 
during the last several years. Phase transitions are 
fascinating phenomena observed in a wide varie-
ty of chemical, physical, and biological systems. 
They encompass a range of phenomena that in-

clude: (i) transitions between solid, liquid, and ga-
seous phases of matter; (ii) transitions between 
paramagnetism and several magnetically ordered 
phases (ferromagnetic, antiferromagnetic, and fe-
rrimagnetic); (iii) the superconducting transition; 
(iv) the superfluid transition; and many others. 
One characteristic of a phase transition is a sin-
gular change in various physical properties of the 
system. Phase transition is accompanied by the 
appearance of some sort of spontaneous orde-
ring or symmetry breaking. Examples of orders 
that emerge are the crystalline order of solids, the 
breaking of rotational symmetry and time reversal 
symmetry in magnetic systems, and the “off-dia-
gonal long-range order” present in superconduc-
tors and superfluids.

Phase transitions can occur even at zero tempe-
rature, with variation of some state parameters, 
such as pressure, chemical pressure, magnetic 
field, or electric field. A phase transition at T=0 is 
called a quantum phase transition. It is characteri-
zed by singular change in the fundamental state of 
the system. It is important to note that although 
zero temperature is impossible to achieve, the 
effects of a quantum phase transition at T=0 can 
still be felt at finite temperatures [3]. It is thus im-
portant to study quantum phase transitions, due 
to their impact on real systems and many poten-
tial applications.

Understanding systems’ behavior close to phase 
transition, induced by electron-electron interac-
tion, remains at the epicenter of scientific and 
technological research. One ingredient is the dis-
tinction between metallic and insulating behavior, 
which is only well defined at zero temperature. 
As T→0, resistivity of an insulator diverges, while 
that of a metal converges. At temperatures fur-
ther away from zero, resistivity is bounded in both 
cases. As a result, one can consider the metal-in-
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sulator transition as, essentially, a quantum pha-
se transition. However, several systems exhibit an 
abrupt jump in conductivity by several orders of 
magnitude at finite temperatures. It is therefore 
natural to extend the metal-insulator transition 
concept to finite temperatures. The theoretical 
description of this extension started with Mott's 
work [4], and grew further with Hubbard's contri-
bution [5], and the description of Brinkman and 
Rice [6]. Dynamical Mean Field Theory (DMFT) 
unified the views of Hubbard and Brinkman and 
Rice and has become the most widely accepted 
scheme for theoretical description of the Mott 
transition.

The aforementioned theoretical tools allow us to 
explain the behavior of compounds such as tran-
sition metal oxides. One of the first compounds 
where Mott transition was ever observed is V2O3  
doped with chromium or titanium [7]. The transi-
tion had been induced by varying pressure, che-
mical potential, and/or temperature. Since then, 
the metal-insulator transition has been observed 
in other physical systems, including: (i) doped se-
miconductors (such as Si doped with P or B [8, 9]); 
(ii) two-dimensional electron systems in MOSFETs 
(“metal-oxide-semiconductor field-effect tran-
sistors” [10]) or semiconductor heterostructures 
(GaAs / AlGaAs) [11, 12]; (iii) systems containing 
transition metals (V2O3[13], VO2 [14], NiSSe [15], 
Nb [16]); and (iv) organic conductors (for exam-
ple, κ-(BETD TTF)2 Cu[N(CN)2]Cl [17]). The tran-
sition can now be induced by varying pressure, 
chemical potential, concentration of dopants, or 
temperature. Many of these systems are not pure, 
exhibiting intrinsic or extrinsic disorder.

There are several known mechanisms capable 
of transforming a metal into an insulator. In the 

absence of electron-electron interactions, a suffi-
ciently high level of disorder leads to localization 
of the particle’s wave function, the so-called An-
derson localization [18]. Much is known about 
this mechanism, in particular, a successful scaling 
theory [19] showed that all states of a particle are 
localized in the presence of any level of disorder in 
systems of reduced dimension, d ≤ 2.  

When d > 2, it is necessary to add a minimum 
amount of disorder to transform the metal into an 
insulator. This transition is known as the Anderson 
metal-insulator transition.

Mott proposed that, even in the absence of di-
sorder, electron-electron interactions can, under 
certain circumstances, induce a metal-insulator 
transition [20]. Although Mott's original mecha-
nism was essentially based on the long-range 
character of the Coulomb interactions, a model 
with interactions of short range was proposed by 
Hubbard [21, 22, 23]. In this context, a metal-in-
sulator transition may occur for sufficiently strong 
electronic interactions when there is one valence 
electron per site of the crystalline network. Tran-
sitions induced by electron-electron interactions 
are known as Mott or Mott-Hubbard transitions. 
Understanding the interplay between disorders 
and interactions [24, 25, 26, 27], despite the pro-
gress achieved, remains an essentially open pro-
blem [3]. 

Several approaches have been introduced to 
theoretically describe the Mott transition with 
Hubbard’s series of contributions [21, 22, 23] 
being one of the first. Starting with the so-called 
atomic limit, where electron-electron interaction 
energy is much greater than the kinetic energy 
of each electron, and the system behaves as an 
insulator, Hubbard gradually reduces the value 
of that interaction. The characteristic gap of the 
Mott insulator, which separates two excitation 
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bands, known as Hubbard bands, closes at a criti-
cal value U=U�Hubb and the system becomes meta-
llic. Brinkman and Rice follow an alternative path 
[28]. Using the variational wave function propo-
sed by Gutzwiller [29, 30, 31], they analyze how 
correlated metallic behavior collapses by increa-
sed electronic interactions. In this case, at a cer-
tain critical value of the U=UcBR interaction, the 
quasiparticles of the strongly correlated Fermi 
liquid disappear and the system becomes insu-
lator. While Hubbard's approach cannot effecti-
vely describe the quasiparticles of the correlated 
metal, the Brinkman-Rice approach does not pre-
dict the presence of Hubbard bands. Still, both 
features are observed experimentally, for exam-
ple in optical conductivity measurements, which 
highlights the insufficiency of these two approa-
ches.

Results and Conclusions

Dynamical Mean Field Theory (DMFT) [32, 33] 
allowed a more concise description of the Mott 
transition by unifying the view of Hubbard with 
that of Brinkman and Rice. DMFT can incorpora-
te, for intermediate values of the interaction U, 
both the low-energy Fermi liquid particles and 
the Hubbard bands at high energies. In this con-
text, the Mott transition is a first order transition, 
characterized by the disappearance of quasi-par-
ticles, with only the finite energy excitations of the 
Hubbard bands present. The transition is charac-
terized by a region of coexistence between the 
metal and the insulator, as in the case of super-
cooling and superheating of the liquid-gas transi-
tion. The first order transition line in the diagram 
of temperature phase versus U interaction (Fig. 1) 
ends at a second-order critical point (Tc, Uc). Be-
low Tc, resistivity drops abruptly as a function of U. 
This drop smoothens with increasing temperature 

and finally disappears at the critical point [3]. 

Fig 1: T × U phase diagram for the system with 
and without disorder

DMFT enables the study of strongly correlated 
electron systems and, with respect to the Mott 
metal-insulator transition, allows a satisfactory 
description in simplified models such as the 
Hubbard model. Its generalization, the Statistical 
Dynamic Mean Field Theory (StatDMFT), descri-
bes disordered systems even more adequately by 
assuming that various lattice sites have different 
energies described by a probability distribution, 
usually uniform or Gaussian [3].

Experimental measurements made on NiS2-xSex 

and organic compounds demonstrate that the 
presence of disorder causes the temperature of 
the critical point to decrease. Experiments con-
ducted on NiS2, for example, show that the critical 
point at which the Mott transition occurs is 150 
K, under external pressure of 3 GPa. On the other 
hand, when Se is substituted for S, yielding 
NiS2-xSex, the critical point is reduced to 100 K [34, 
35]. 
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Although many characteristics of the phase transi-
tions still remain as an open problem, considerable 
progress has been made to reveal the underlying 
physics, both theoretically and experimentally. 
Even greater progress will likely be enabled by 
advances in the latest, most sophisticated tools, 
such as machine learning and deep learning [36]. 
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